Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 811
Filtrar
1.
Sci Rep ; 14(1): 2347, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-38281987

RESUMO

Schistosoma mekongi, a significant schistosome parasite, has various life stages, including egg, cercaria, female, and male, that play crucial roles in the complex life cycle. This study aimed to explore the microRNA (miRNA) profiles across these developmental stages to understand their potential functions and evolutionary significance, which have not been studied. Pre-processed sequencing reads of small RNA (sRNA) were obtained, and annotations were performed against the S. japonicum reference miRNA database. Results indicated marked variations in miRNA profiles across different life stages, with notable similarities observed between female and male S. mekongi. Principal Coordinate Analysis (PCoA) and unsupervised clustering revealed distinct miRNA signatures for each stage. Gene ontology (GO) analysis unveiled the potential roles of these miRNAs in various biological processes. The differential expression of specific miRNAs was prominent across stages, suggesting their involvement in crucial developmental processes. Furthermore, orthologous miRNA analysis against various worm species revealed distinct presence-absence patterns, providing insights into the evolutionary relationships of these miRNAs. In conclusion, this comprehensive investigation into the miRNA profiles of S. mekongi offers valuable insights into the functional and evolutionary aspects of miRNAs in schistosome biology.


Assuntos
MicroRNAs , Schistosoma japonicum , Animais , Masculino , Feminino , Schistosoma japonicum/genética , MicroRNAs/genética , Estágios do Ciclo de Vida/genética , RNA de Helmintos/genética
2.
Nature ; 625(7994): 366-376, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38093015

RESUMO

Sexual reproduction of Toxoplasma gondii, confined to the felid gut, remains largely uncharted owing to ethical concerns regarding the use of cats as model organisms. Chromatin modifiers dictate the developmental fate of the parasite during its multistage life cycle, but their targeting to stage-specific cistromes is poorly described1,2. Here we found that the transcription factors AP2XII-1 and AP2XI-2 operate during the tachyzoite stage, a hallmark of acute toxoplasmosis, to silence genes necessary for merozoites, a developmental stage critical for subsequent sexual commitment and transmission to the next host, including humans. Their conditional and simultaneous depletion leads to a marked change in the transcriptional program, promoting a full transition from tachyzoites to merozoites. These in vitro-cultured pre-gametes have unique protein markers and undergo typical asexual endopolygenic division cycles. In tachyzoites, AP2XII-1 and AP2XI-2 bind DNA as heterodimers at merozoite promoters and recruit MORC and HDAC3 (ref. 1), thereby limiting chromatin accessibility and transcription. Consequently, the commitment to merogony stems from a profound epigenetic rewiring orchestrated by AP2XII-1 and AP2XI-2. Successful production of merozoites in vitro paves the way for future studies on Toxoplasma sexual development without the need for cat infections and holds promise for the development of therapies to prevent parasite transmission.


Assuntos
Gatos , Técnicas In Vitro , Estágios do Ciclo de Vida , Toxoplasma , Animais , Gatos/parasitologia , Humanos , Cromatina/genética , Cromatina/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Técnicas In Vitro/métodos , Estágios do Ciclo de Vida/genética , Merozoítos/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/fisiologia , Toxoplasmose/genética , Toxoplasmose/parasitologia , Toxoplasmose/transmissão , Transcrição Gênica
3.
Parasitol Res ; 122(8): 1747-1757, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37272974

RESUMO

Trypanosoma cruzi has a complex life cycle consisting of four morphological and distinct biological stages. Although some authors suggest that T. cruzi primarily follows clonal reproduction, recent genomic and transcriptomic studies indicate an unorthodox capacity for recombination. We aimed to estimate the differential gene expression of 10 meiosis/homologous recombination-related genes during the T. cruzi life cycle, including epimastigotes, under two different types of stress (oxidative stress and pH changes). We performed RT-qPCR tests using novel-designed primers to estimate the differential gene expression (∆Ct and ∆∆Ct) of nine genes (SPO11, HAP2, RAD50, MRN complex, BRCA2, DMC1, MND1, and RPA1) and RAD51, which was previously reported. Our results show basal expression of all genes during the life cycle, indicating their hypothetical role in several cellular processes but with specific signatures of differential gene expression during the life cycle (HAP2, RPA, RAD50, BRCA2, MND1, and DMC1) and oxidative stress (RPA, MRE11, NBS1, BRCA2, MND1, and RAD51). Additionally, we found that the MRN complex has an independent level of expression in T. cruzi, with profiles of MRE11 and NBS1 upregulated in some stages. Recent studies on other trypanosomatids have highlighted the influence of HAP2 and RPA in recombination and hybridization. If T. cruzi uses the same repertoire of genes, our findings could suggest that metacyclogenesis may be the putative step that the parasite uses to undergo recombination. Likewise, our study reveals the differential profiles of genes expressed in response to oxidative and pH stress. Further studies are necessary to confirm our findings and understand the recombination mechanism in T. cruzi.


Assuntos
Trypanosoma cruzi , Animais , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Recombinação Homóloga , Meiose/genética , Estágios do Ciclo de Vida/genética
4.
Mol Biol Evol ; 40(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37140022

RESUMO

The spontaneous mutation rate µ is a crucial parameter to understand evolution and biodiversity. Mutation rates are highly variable across species, suggesting that µ is susceptible to selection and drift and that species life cycle and life history may impact its evolution. In particular, asexual reproduction and haploid selection are expected to affect the mutation rate, but very little empirical data are available to test this expectation. Here, we sequence 30 genomes of a parent-offspring pedigree in the model brown alga Ectocarpus sp.7, and 137 genomes of an interspecific cross of the closely related brown alga Scytosiphon to have access to the spontaneous mutation rate of representative organisms of a complex multicellular eukaryotic lineage outside animals and plants, and to evaluate the potential impact of life cycle on the mutation rate. Brown algae alternate between a haploid and a diploid stage, both multicellular and free living, and utilize both sexual and asexual reproduction. They are, therefore, excellent models to empirically test expectations of the effect of asexual reproduction and haploid selection on mutation rate evolution. We estimate that Ectocarpus has a base substitution rate of µbs = 4.07 × 10-10 per site per generation, whereas the Scytosiphon interspecific cross had µbs = 1.22 × 10-9. Overall, our estimations suggest that these brown algae, despite being multicellular complex eukaryotes, have unusually low mutation rates. In Ectocarpus, effective population size (Ne) could not entirely explain the low µbs. We propose that the haploid-diploid life cycle, combined with extensive asexual reproduction, may be additional key drivers of the mutation rate in these organisms.


Assuntos
Diploide , Animais , Haploidia , Taxa de Mutação , Eucariotos , Estágios do Ciclo de Vida/genética , Plantas , /genética
5.
Trends Genet ; 39(7): 528-530, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37024335

RESUMO

Marine larvae have factored heavily in pursuits to understand the origin and evolution of animal life cycles. Recent comparisons of gene expression and chromatin state in different species of sea urchin and annelid show how evolutionary changes in embryonic gene regulation can lead to markedly different larval forms.


Assuntos
Estágios do Ciclo de Vida , Ouriços-do-Mar , Animais , Larva/genética , Estágios do Ciclo de Vida/genética , Ouriços-do-Mar/genética
6.
Front Cell Infect Microbiol ; 13: 1138456, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091675

RESUMO

Trypanosoma cruzi is a digenetic unicellular parasite that alternates between a blood-sucking insect and a mammalian, host causing Chagas disease or American trypanosomiasis. In the insect gut, the parasite differentiates from the non-replicative trypomastigote forms that arrive upon blood ingestion to the non-infective replicative epimastigote forms. Epimastigotes develop into infective non-replicative metacyclic trypomastigotes in the rectum and are delivered via the feces. In addition to these parasite stages, transitional forms have been reported. The insect-feeding behavior, characterized by few meals of large blood amounts followed by long periods of starvation, impacts the parasite population density and differentiation, increasing the transitional forms while diminishing both epimastigotes and metacyclic trypomastigotes. To understand the molecular changes caused by nutritional restrictions in the insect host, mid-exponentially growing axenic epimastigotes were cultured for more than 30 days without nutrient supplementation (prolonged starvation). We found that the parasite population in the stationary phase maintains a long period characterized by a total RNA content three times smaller than that of exponentially growing epimastigotes and a distinctive transcriptomic profile. Among the transcriptomic changes induced by nutrient restriction, we found differentially expressed genes related to managing protein quality or content, the reported switch from glucose to amino acid consumption, redox challenge, and surface proteins. The contractile vacuole and reservosomes appeared as cellular components enriched when ontology term overrepresentation analysis was carried out, highlighting the roles of these organelles in starving conditions possibly related to their functions in regulating cell volume and osmoregulation as well as metabolic homeostasis. Consistent with the quiescent status derived from nutrient restriction, genes related to DNA metabolism are regulated during the stationary phase. In addition, we observed differentially expressed genes related to the unique parasite mitochondria. Finally, our study identifies gene expression changes that characterize transitional parasite forms enriched by nutrient restriction. The analysis of the here-disclosed regulated genes and metabolic pathways aims to contribute to the understanding of the molecular changes that this unicellular parasite undergoes in the insect vector.


Assuntos
Adaptação Fisiológica , Doença de Chagas , Insetos , Estágios do Ciclo de Vida , Inanição , Trypanosoma cruzi , Animais , Diferenciação Celular , Doença de Chagas/genética , Doença de Chagas/metabolismo , Doença de Chagas/parasitologia , Insetos/metabolismo , Insetos/parasitologia , Insetos/fisiologia , Mamíferos/parasitologia , Transcriptoma/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/isolamento & purificação , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/fisiologia , Inanição/genética , Inanição/parasitologia , Inanição/fisiopatologia , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Estágios do Ciclo de Vida/genética , Estágios do Ciclo de Vida/fisiologia
7.
PeerJ ; 11: e15118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065693

RESUMO

Knowledge of life histories is crucial for understanding ecological and evolutionary processes, but for many hydrozoan species only incomplete life cycles have been described due to challenges in linking hydromedusae with their polyp stages. Using a combination of DNA barcoding, morphology, and ecological information, we describe for the first time the polyp stage of Halopsis ocellata Agassiz, 1865 and re-describe that of Mitrocomella polydiademata (Romanes, 1876). Campanulinid hydroids referable to Lafoeina tenuis Sars, 1874 and collected in the same biogeographic region as the type locality of this species are shown to be the polyp stage of these two mitrocomid hydromedusae. The nominal species L. tenuis thus is a species complex that includes the polyp stage of medusae belonging to at least two genera currently placed in a different family. Consistent morphological and ecological differences were found between the polyps linked to each of these two hydromedusae, but molecular results suggest that yet other species may have morphologically similar hydroids. Polyps morphologically identified to L. tenuis are therefore better referred to as Lafoeina tenuis-type until further associations are resolved, particularly when occurring outside of the area of distribution of H. ocellata and M. polydiademata. Molecular identification integrated with traditional taxonomy is confirmed as an effective approach to link inconspicuous stages of marine invertebrates with hitherto unknown life cycles, especially in often-overlooked taxa. Disentangling the relationships between L. tenuis, H. ocellata, and M. polydiademata lays the ground for future research aimed at resolving the taxonomy and systematics of the enigmatic families Mitrocomidae and Campanulinidae.


Assuntos
Hidrozoários , Humanos , Animais , Hidrozoários/genética , Código de Barras de DNA Taxonômico , Filogenia , Evolução Biológica , Estágios do Ciclo de Vida/genética
8.
Acta Trop ; 241: 106890, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36907290

RESUMO

Babesia gibsoni is an intraerythrocytic apicomplexan parasite transmitted by Haemaphysalis longicornis and causes canine babesiosis. Within the tick, the Babesia parasite undergoes sexual conjugation and the sporogony process of its life cycle. To control B. gibsoni infection, prompt and effective treatment of acute infections and curing chronic carriers are urgently needed. Gene disruption of Plasmodium CCps resulted in blocking the transition of sporozoites from the mosquito midgut to the salivary glands, showing that these proteins are potential targets for the development of a transmission-blocking vaccine. In this study, we described the identification and characterization of three members of the CCp family in B. gibsoni, named CCp1, CCp2, and CCp3. The B. gibsoni sexual stages were induced in vitro by exposing parasites to xanthurenic acid (XA), dithiothreitol (DTT), and tris (2-carboxyethyl) phosphine (TCEP) at serial concentrations. Among them, 100 µM XA-exposed and cultured at 27 °C without CO2B. gibsoni presented diverse morphologies, including parasites with long projections, gradually increased free merozoites, and aggregated and round forms, indicative of sexual stage induction. Then, the expression of CCp proteins of induced parasites was confirmed by real-time reverse transcription PCR, immunofluorescence, and western blot. The results showed that BgCCp genes were highly significantly increased at 24 h post-sexual stage induction (p < 0.01). The induced parasites were recognized by anti-CCp mouse antisera and anti-CCp 1, 2, and 3 antibodies weakly reacted with sexual stage proteins of expected molecular weights of 179.4, 169.8, and 140.0 KDa, respectively. Our observations on morphological changes and confirmation of sexual stage protein expression will advance elemental biological research and lay the foundation for the development of transmission-blocking vaccines against canine babesiosis.


Assuntos
Babesia , Babesiose , Doenças do Cão , Ixodidae , Animais , Cães , Camundongos , Babesia/genética , Babesiose/parasitologia , Anticorpos Antiproteína Citrulinada/metabolismo , Ixodidae/parasitologia , Estágios do Ciclo de Vida/genética , Doenças do Cão/parasitologia
9.
mSphere ; 8(2): e0060622, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36786611

RESUMO

Toxoplasma gondii is a widespread protozoan parasite that has a significant impact on human and veterinary health. The parasite undergoes a complex life cycle involving multiple hosts and developmental stages. How Toxoplasma transitions between life cycle stages is poorly understood yet central to controlling transmission. Of particular neglect are the factors that contribute to its sexual development, which takes place exclusively in feline intestines. While epigenetic repressors have been shown to play an important role in silencing the spurious gene expression of sexually committed parasites, the specific factors that recruit this generalized machinery to the appropriate genes remain largely unexplored. Here, we establish that a member of the AP2 transcription factor family, AP2XII-2, is targeted to genomic loci associated with sexually committed parasites along with epigenetic regulators of transcriptional silencing, HDAC3 and MORC. Despite its widespread association with gene promoters, AP2XII-2 is required for the silencing of relatively few genes. Using the CUT&Tag (cleavage under targets and tagmentation) methodology, we identify two major genes associated with sexual development downstream of AP2XII-2 control, AP2X-10 and the amino acid hydroxylase AAH1. Our findings show that AP2XII-2 is a key contributor to the gene regulatory pathways modulating Toxoplasma sexual development. IMPORTANCE Toxoplasma gondii is a parasite that undergoes its sexual stage exclusively in feline intestines, making cats a major source of transmission. A better understanding of the proteins controlling the parasite's life cycle stage transitions is needed for the development of new therapies aimed at treating toxoplasmosis and the transmission of the infection. Genes that regulate the sexual stages need to be turned on and off at the appropriate times, activities that are mediated by specific transcription factors that recruit general machinery to silence or activate gene expression. In this study, we identify a transcription factor called AP2XII-2 as being important for the repression of a subset of sexual stage genes, including a sexual stage-specific AP2 factor (AP2X-10) and a protein (AAH1) required to construct the infectious oocysts expelled from infected cats.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasmose , Animais , Gatos , Humanos , Expressão Gênica , Estágios do Ciclo de Vida/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/parasitologia , Fatores de Transcrição/genética
10.
Semin Cell Dev Biol ; 134: 14-26, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35428563

RESUMO

Red algae of the order Bangiales are notable for exhibiting flexible promotion of sexual and asexual reproductive processes by environmental stresses. This flexibility indicates that a trade-off between vegetative growth and reproduction occurs in response to environmental stresses that influence the timing of phase transition within the life cycle. Despite their high phylogenetic divergence, both filamentous and foliose red alga in the order Bangiales exhibit a haploid-diploid life cycle, with a haploid leafy or filamentous gametophyte (thallus) and a diploid filamentous sporophyte (conchocelis). Unlike haploid-diploid life cycles in other orders, the gametophyte in Bangiales is generated independently of meiosis; the regulation of this generation transition is not fully understood. Based on transcriptome and gene expression analyses, the originally proposed biphasic model for alternation of generations in Bangiales was recently updated to include a third stage. Along with the haploid gametophyte and diploid sporophyte, the triphasic framework recognizes a diploid conchosporophyte-a conchosporangium generated on the conchocelis-phase and previously considered to be part of the sporophyte. In addition to this sexual life cycle, some Bangiales species have an asexual life cycle in which vegetative cells of the thallus develop into haploid asexual spores, which are then released from the thallus to produce clonal thalli. Here, we summarize the current knowledge of the triphasic life cycle and life cycle trade-off in Neopyropia yezoensis and 'Bangia' sp. as model organisms for the Bangiales.


Assuntos
Rodófitas , Animais , Filogenia , Rodófitas/genética , Estágios do Ciclo de Vida/genética , Células Germinativas Vegetais , Reprodução/genética
11.
Mol Ecol ; 32(7): 1777-1790, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36579456

RESUMO

Many parasites utilize asexual and sexual reproduction and multiple hosts to complete their life cycles. How these taxa avoid inbreeding is an essential question for understanding parasite evolution and ecology. Aquatic trematodes that require multiple host species may benefit from diverse genetic parasite assemblages accumulating within second intermediate hosts prior to sexual reproduction in definitive hosts. However, Cotylurus species are able to utilize the same snail species as first and second intermediate hosts, potentially resulting in the accumulation of genetically identical clones (clonemates) prior to sexual reproduction. In this study, we developed and analysed novel microsatellite loci to determine if clones are accumulating within snail hosts prior to ingestion by bird hosts and the effects this could have on parasite inbreeding. Contrary to previous studies of aquatic trematodes, significantly large numbers of clonemates were present within snails, but full-sibs were not. Genetic structure was present over a relatively small geographical scale despite the use of vagile definitive hosts. Phylogenetic analysis identified the Cotylurus sp. clones as belonging to a single species. Despite the presence of clones within snails, mating between clones/selfing was not common and heterozygosity is maintained within individuals. Potential issues with clones mating may be mitigated by the presence of snails with numerous clones, the consumption of many snails by bird hosts and parasite clone recognition/avoidance. Use of the same host species for multiple life stages may have advantages when parasites are able to avoid inbreeding and the required hosts are common.


Assuntos
Parasitos , Trematódeos , Humanos , Animais , Endogamia , Filogenia , Interações Hospedeiro-Parasita/genética , Estágios do Ciclo de Vida/genética , Trematódeos/genética
12.
PLoS Pathog ; 18(11): e1010955, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36395346

RESUMO

Cyst-forming Apicomplexa (CFA) of the Sarcocystidae have a ubiquitous presence as pathogens of humans and farm animals transmitted through the food chain between hosts with few notable exceptions. The defining hallmark of this family of obligate intracellular protists consists of their ability to remain for very long periods as infectious tissue cysts in chronically infected intermediate hosts. Nevertheless, each closely related species has evolved unique strategies to maintain distinct reservoirs on global scales and ensuring efficient transmission to definitive hosts as well as between intermediate hosts. Here, we present an in-depth comparative mRNA expression analysis of the tachyzoite and bradyzoite stages of Besnoitia besnoiti strain Lisbon14 isolated from an infected farm animal based on its annotated genome sequence. The B. besnoiti genome is highly syntenic with that of other CFA and also retains the capacity to encode a large majority of known and inferred factors essential for completing a sexual cycle in a yet unknown definitive host. This work introduces Besnoitia besnoiti as a new model for comparative biology of coccidian tissue cysts which can be readily obtained in high purity. This model provides a framework for addressing fundamental questions about the evolution of tissue cysts and the biology of this pharmacologically intractable infectious parasite stage.


Assuntos
Besnoitia , Estágios do Ciclo de Vida , Animais , Humanos , Estágios do Ciclo de Vida/genética , Cadeia Alimentar , Expressão Gênica
13.
Nat Commun ; 13(1): 7039, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396632

RESUMO

Amphibians have undergone important evolutionary transitions in reproductive modes and life-cycles. We compare large-scale macroevolutionary patterns in these transitions across the three major amphibian clades: frogs, salamanders, and caecilians. We analyse matching reproductive and phylogenetic data for 4025 species. We find that having aquatic larvae is ancestral for all three groups and is retained by many extant species (33-44%). The most frequent transitions in each group are to relatively uncommon states: live-bearing in caecilians, paedomorphosis in salamanders, and semi-terrestriality in frogs. All three groups show transitions to more terrestrial reproductive modes, but only in caecilians have these evolved sequentially from most-to-least aquatic. Diversification rates are largely independent of reproductive modes. However, in salamanders direct development accelerates diversification whereas paedomorphosis decreases it. Overall, we find a widespread retention of ancestral modes, decoupling of trait transition rates from patterns of species richness, and the general independence of reproductive modes and diversification.


Assuntos
Estágios do Ciclo de Vida , Reprodução , Animais , Filogenia , Estágios do Ciclo de Vida/genética , Reprodução/genética , Anuros , Urodelos/genética
14.
Sci Rep ; 12(1): 13461, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931886

RESUMO

Avian schistosomes, comprise a diverse and widespread group of trematodes known for their surprising ability to switch into new hosts and habitats. Despite the considerable research attention on avian schistosomes as causatives of the human cercarial dermatitis, less it is known about the diversity, geographical range and host associations of the marine representatives. Our molecular analyses inferred from cox1 and 28S DNA sequence data revealed presence of two schistosome species, Ornithobilharzia canaliculata (Rudolphi, 1819) Odhner, 1912 and a putative new species of Austrobilharzia Johnston, 1917. Molecular elucidation of the life-cycle of O. canaliculata was achieved for the first time via matching novel and published sequence data from adult and larval stages. This is the first record of Ornithobilharzia from the Persian Gulf and globally the first record of this genus in a potamidid snail host. Our study provides: (i) new host and distribution records for major etiological agents of cercarial dermatitis and contributes important information on host-parasite relationships; (ii) highlights the importance of the molecular systematics in the assessment of schistosome diversity; and (iii) calls for further surveys to reach a better understanding of the schistosome diversity and patterns of relationships among them, host associations, transmission strategies and distribution coverage.


Assuntos
Dermatite , Schistosomatidae , Esquistossomose , Animais , Humanos , Oceano Índico , Estágios do Ciclo de Vida/genética , Filogenia , Schistosoma , Schistosomatidae/genética , Esquistossomose/parasitologia , Caramujos/parasitologia
15.
Proc Natl Acad Sci U S A ; 119(36): e2118763119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037356

RESUMO

Turritopsis dohrnii is the only metazoan able to rejuvenate repeatedly after its medusae reproduce, hinting at biological immortality and challenging our understanding of aging. We present and compare whole-genome assemblies of T. dohrnii and the nonimmortal Turritopsis rubra using automatic and manual annotations, together with the transcriptome of life cycle reversal (LCR) process of T. dohrnii. We have identified variants and expansions of genes associated with replication, DNA repair, telomere maintenance, redox environment, stem cell population, and intercellular communication. Moreover, we have found silencing of polycomb repressive complex 2 targets and activation of pluripotency targets during LCR, which points to these transcription factors as pluripotency inducers in T. dohrnii. Accordingly, we propose these factors as key elements in the ability of T. dohrnii to undergo rejuvenation.


Assuntos
Hidrozoários , Rejuvenescimento , Animais , Genômica , Hidrozoários/genética , Hidrozoários/crescimento & desenvolvimento , Estágios do Ciclo de Vida/genética , Transcriptoma
16.
Gene ; 840: 146733, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35863715

RESUMO

The typical life cycle of the moon jellyfish (Aurelia aurita) includes the planula, polyp, strobila, ephyra, and medusa developmental stages. These stages exhibit huge differences in both external morphology and internal physiological functions. However, the gene co-expression network involved in these post-embryonic developmental processes has not been studied yet. Here, based on 15 RNA sequencing samples covering all five stages of the A. aurita life cycle, we systematically analyzed the gene co-expression network and obtained 35 relevant modules. Furthermore, we identified the highly correlated modules and hub genes for each stage. These hub genes are implicated to play important roles in the developmental processes of A. aurita, which should help improve our understanding of the jellyfish life cycle.


Assuntos
Cifozoários , Animais , Sequência de Bases , Estágios do Ciclo de Vida/genética , Cifozoários/genética
17.
Front Cell Infect Microbiol ; 12: 852902, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903202

RESUMO

Multiple genes and proteins have been identified as differentially expressed in the stages of the Leishmania life cycle. The differentiation processes are implicated in specific transcriptional and proteomic adjustments driven by gene expression regulation mechanisms. Leishmania parasites lack gene-specific transcriptional control, and gene expression regulation mostly depends on posttranscriptional mechanisms. Due to the lack of transcriptional regulation, criticism regarding the relevance of transcript quantification as a possible and efficient prediction of protein levels is recurrent in studies that use transcriptomic information. The advent of high-throughput technologies has improved the analysis of genomes, transcriptomes and proteomes for different organisms under several conditions. Nevertheless, defining the correlation between transcriptional and proteomic profiles requires arduous and expensive work and remains a challenge in Leishmania. In this review, we analyze transcriptomic and proteomic data for several Leishmania species in two different stages of the parasite life cycle: metacyclogenesis and amastigogenesis (amastigote differentiation). We found a correlation between mRNA and protein levels of 60.9% and 69.8% for metacyclogenesis and amastigogenesis, respectively; showing that majority mRNA and protein levels increase or decrease concomitantly. Among the analyzed genes that did not present correlation indicate that transcriptomic data should be carefully interpreted as protein expression. We also discuss possible explanations and mechanisms involved for this lack of correlation.


Assuntos
Leishmania , Parasitos , Animais , Leishmania/genética , Leishmania/metabolismo , Estágios do Ciclo de Vida/genética , Parasitos/genética , Proteoma/análise , Proteômica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
PLoS Biol ; 20(7): e3001704, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35900985

RESUMO

Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.


Assuntos
Culicidae , Malária , Parasitos , Plasmodium , Animais , Humanos , Cinesinas/genética , Estágios do Ciclo de Vida/genética , Malária/metabolismo , Mamíferos , Microtúbulos/metabolismo , Plasmodium/genética
19.
Mar Biotechnol (NY) ; 24(4): 706-721, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35882688

RESUMO

Ploidy variants can be utilized to increase yield, introduce sterility, and modify specific traits with an economic impact. Despite economic importance of Saccharina species, their nuclear DNA content in different cell types and life stages remain unclear. The present research was initiated to determine the nuclear DNA content and intraindividual variation at different life cycle stages of the Laminarialean kelp Saccharina latissima. Nuclear DNA content in embryonic and mature sporophytes, released and unreleased zoospores, female, and male gametophytes from Sør-Trøndelag county in Norway were estimated by image analysis using the DNA-localizing fluorochrome DAPI and chicken's red blood cells as a standard. DNA content of a total of 6905 DAPI-stained nuclei was estimated. This is the first study of nuclear DNA content which covered the life cycle of kelp. The lowest level of DNA content (1C) was observed in zoospores with an average of 0.76 pg. Male and female single spore gametophyte cultures presented higher average DNA content, more than double that of zoospores, suggesting the presence of polyteny. Female gametophyte nuclei were slightly larger and more variable in size than those of male gametophytes. The DNA content observed in embryonic sporophytes and in meristoderm cells from older sporophytes (1.51 pg) was 2C as expected and in the range of previously published studies of sporophytes of S. latissima. Mature sporophytes showed intra-plant variation with DNA content values ranging from 2-16C. The main difference was between meristoderm cells (mostly 2C) and cortical and medullary cells (2-16C).


Assuntos
Kelp , Animais , DNA/genética , Kelp/genética , Estágios do Ciclo de Vida/genética , Ploidias , Açúcares
20.
Mol Biochem Parasitol ; 250: 111491, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35697205

RESUMO

The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.


Assuntos
Nematoides , Strongyloides stercoralis , Estrongiloidíase , Animais , Humanos , Estágios do Ciclo de Vida/genética , Nematoides/fisiologia , Strongyloides stercoralis/genética , Estrongiloidíase/parasitologia , Simbiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...